1-D DATA

Data Analysis:

infer similarities or differences

Significance Testing

Is there a difference?

Correlation / Co-variation Testing

Are these differences <u>related</u>?

Hypothesis/Modeling: predict behavior from properties

Deterministic Models: ensembles

 $v = e^{-k \cdot t}$

analytical: general soln

 $\Delta y = -k \cdot t \cdot \Delta t$

numerical: case-specific

Stochastic Models: single molecule

accounts for randomness, noise

Component / Factor Analysis

How many <u>factors</u> <u>underly</u> differences in n-measurements?

Cluster / Discriminant Analysis

How many groups can be identified in n-measurements?

N-D DATA

Bayesian Network Analysis

 $p(D|S^1) = p(D)p(S^1|D) / p(S^1)$

"p(D|S¹)" =
probability(p) of
hypothesis(D)
given data(S¹)

Stoichiometric Network Models

 $\frac{d\overrightarrow{\mathbf{C}}}{dt} = \begin{bmatrix} \text{Atlemostry} \\ \text{Track} \end{bmatrix} \overrightarrow{\mathbf{rates}}$

pathway flux analysis

Boolean Network Models

AND

on-off regulatory analysis

experiment